- 《三角形的内角和》教学反思 推荐度:
- 相关推荐
《三角形的内角和》教学反思
作为一名优秀的教师,我们的任务之一就是教学,对教学中的新发现可以写在教学反思中,那要怎么写好教学反思呢?以下是小编收集整理的《三角形的内角和》教学反思,仅供参考,欢迎大家阅读。

《三角形的内角和》教学反思1
课程将探究式学习作为学生学习的主要方式之一,着重点放在让学生在主动参与的过程中进行学习,在探究问题的活动中获取知识并主动建构新的认知结构,了解获取知识的途径和技巧。
这节课我设计了以“观察—猜想—验证—应用”为主线,让学生在自主学习中“不知不觉”学习到新的知识。在学生猜测三角形内角和是多少度的基础上,引导学生通过探究活动来验证自己的`观点是否正确,激发求知的渴望和学习的热情,最后达成共识。
这节课我创设了学生喜欢的情境:“三个三角形的争吵”入手,让学生自己动手探索三角形的内角和。让学生“量一量”、“剪—拼”、贴近了学生的生活,降低了学习难度,注重学生们的动手实践,亲生去体验去感悟。
在操作反馈的过程中我提出了两个问题:第一,你选用什么三角形,采用什么方法来验证;
第二,经过操作得到什么结论。学生分小组对大小不一的三角形进行验证,经历量、剪、拼一系列操作活动,从而得出“三角形内角和是180°”这一结论。
本节课不足之处:
1、 学生在还没学习三角形的特性和三角形三边的关系及三角形的内角和的基础上进行学习三角形内角和。就无法复习三角形的有关知识。
2、在解决三角形内角和是什么这个问题,说的不够透彻,课后我改成这样,先让两个学生说,说完让一个学生指出来,让他用黑色水笔画出来。为验证三角形内是180度做铺垫。
3、学生在介绍剪拼的方法时,可以让介绍的学生先上台演示是如何把内角拼在一起,这样学生在动手操作的时候就可以节省时间。而且由于内角和这个概念没有讲清楚,学生在这一环节花了一定的时间。
4、在学生汇报方法时,还应该用尺子比一下拼后的三个角是在一 条直线上,更直观的说明三个角形成一个平角,三角形的内角和是180°。
5、练习设计是有分层次,但是学生说的较少,我比较急地去分析, 留给学生的时间不足,这是我今后要特别注意的一个方面。
本节课我引导学生用测量或剪拼的方法探究三角形的内角和。并会运用三角形的内角和解决实际问题,但整堂课引导的比较急躁,今后我要朝着更加完美的方向努力,我愿意锻炼和改变自己。
《三角形的内角和》教学反思2
在课间我有意问了一下学生你们知不知道三角形的内角和是几度,发现有一些学生已经知道三角形三个内角的和是180°,因此在导入环节中插入了一个猜角游戏中,请量出自己准备的三角形的三个角的度数,只要你们说出其中两个角的度数,我能猜出第3个角的度数,让生说我猜,要求用自己准备的三角形进行操作。有一部分学生已经能跟着我说出第三个角的度数。当时我并没有批评这些学生,而是采用了表扬的方式,学生很开心。
在接下来的实验验证环节中,那些知道三角形内角和是180°的学生就猜度数,而没有进行真正的实验验证,反倒是刚学到的学生真正做到用实验去验证“三角形的内角和中180°”。因此我一直在想,是不是能设计一些新的方式让已经知道三角形内角和是180°的.学生也能真正参与到实验验证的环节中来。于是让学生请观察自己手中的三角板,问它们是什么三角形?你知道三角板三个内角的和是多少度吗?问学生发现了什么?
三角尺的三个内角和是180°。然后让学生撕下三角形的三个内角并把它们拼在一起和折三角形的三个内角,使它们正好折在一起,都能拼成一个平角,
最后拿出课前准备好的长方形、正方形,让学生自己想办法验证三角形内角和是180°。我个人认为学生通过亲自动手操作实验得出三角形内角和是180°,这样使他们大胆地想,学生课上注意力比较集中。教师也能在教学活动中从一个知识的传播者自觉转变为与学生一起发现问题、探讨问题、解决问题的组织者、引导者、合作者。
在“想想做做”第2题中,学生在还没有拼的时候先看了书,就猜拼出来的大三角形的内角和是360°,经过提醒“内角”的含义,学生才真正体会到“任何一个三角形的内角和都是180°”,不管这个三角形是大还是小。
《三角形的内角和》教学反思3
今天讲解的《三角形内角和》一课,是在四年级上学期《角》的单元教学基础上进行教学的,在《角》的单元教学中就已经涉及到了三角形内角和,学生对其有了初步的了解,这学期在原有的基础上进一步继续学习有关知识。
首先,在教学中我对三角形的分类进行了复习,通过让学生们对原有认知的回忆,为新课的学习做好铺垫。进而讲解内角和内角和的定义,再复习平角的概念,在此基础上,先出示长方形和正方形,让学生算它们的内角和,接着出示一个长方形,用剪刀沿一条对角线剪开,把平行四边形分成两个三角形,再让学生们讨论三角形的内角和又是多少?根据刚才的计算,学生很快反应过来说,是180度,因为360o÷2=180o。通过这一设计,使学生对三角形的内角和有了初步的认识,随后我就跟着提出问题:是不是所有的三角形的三个内角和一定是180呢?从而给学生指出了本节课探究学习的目标。
然后让学生先测量计算自己手中三角板的内角和,再一次初步得出三角形的内角和是180度这一结论。这时引导学生思考,这一结论是否具有普遍性,有的`学生会提出结论不具有普遍性,因为三角板很特殊,不能代表所有的三角形,结论还不能成立,这样就让课堂教学到达了最关键的阶段。我给每个小组任意分发了一个锐角三角形、直角三角形和钝角三角形,让学生们自己动手测量计算,然后再总结结论。虽然这一教学环节中有个别学生对量角器的使用方法有遗忘或测量有差错,对教学的时间和效率有一定的影响,但多数同学的测量计算结果是正确的,同时通过教师的纠正点拨使全体同学都掌握了正确的测量方法,培养了学生的实际动手操作能力,激发了学生的学习兴趣。
在测量时,同学们气氛活跃都争先恐后的进行测量计算,所有学生都特别积极,他们有的为了测量的误差而争论的面红耳赤,有的同学也为自己精确测量而兴高采烈,在测量过程中,学生们不仅复习了用量角器量角的方法,更是验证总结出了三角形的内角和等于180度。在愉悦的教学过程中,使教学一气呵成,分散了教学难点,突出了教学重点,加深了学生对本节课知识的掌握和理解,取得了较好的教学效果。
想不到我设计的一个小小的动手操作教学,竟然调动了学生的学习积极性,激发了学生的学习兴趣,对本节课的教学产生了不可估计的效果,不仅点燃了他们求知的欲望,更激发了他们特有的童趣,让整个数学课堂散发着一种催人奋进的热情,使数学课活了起来,知识动了起来,学生们的脑筋更是转了起来,课堂效率也升了起来。通过这节课的教学,不仅让我感受了教学中创造的“意外”精彩,同时也引起了我深深地思考,作为四年级的学生,他们活泼好动,天真可爱,求知欲强,如果在课堂教学中让他们多多的参与一些动手操作,既培养了学生的实际动手操作能力,又调动了学生的学习积极性,让学生在活跃的课堂氛围中学习知识,利于加深学生的记忆,更好的掌握和理解所学知识。
通过这节课的教学,让我有了新的发现,相同的知识,不同的教法,效果也不相同。同时也使我认识到在学生的身上隐藏着许多“宝藏”,只要我们善于寻找和发现,这些“宝藏”将会给我们带来无限的财富。
《三角形的内角和》教学反思4
这节课我让学生经历观察、猜想、实验、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,能有条理地、清晰地阐述自己的观点。在学生猜测三角形的内角和是多少度的基础上,引导学生通过探究活动来验证自己的观点是否正确,激发求知的渴望和学习的热情,最后达成共识。
新课程将探究式学习作为学生学习的主要方式之一,着重点放在让学生在主动参与的过程中进行学习,在探究问题的活动中获取知识并主动建构新的认知结构,了解获取知识的途径和技巧。我在实施探究学习时采用了以下的`教学策略:
(1)创设问题情境,引导学生发现问题,思考问题。
本节课我在教学上先通过大小三角形争论故事引入,让学生产生疑问,继而借助特殊三角形(三角尺)初步感知这些三角形的内角和是180度,让学生猜测是否所有的三角形的内角和都一样呢?学生初步建立一个表象,学生运用已有的知识经验能否解决这样的问题呢?这个问题为后面的猜测和验证做了铺垫,引发思考,激发学习兴趣。引导学生从特殊三角形过渡到一般三角形的验证规律。
(2)创造解决问题的环境,给充分的机会和时间让学生解决问题。 学生在问题面前是退缩还是前进呢?这就看老师如何有效地引导。我预先要求每位学生准备了一些各式各样、大小各异的三角形,还有剪刀,量角器,白纸,直尺等,让他们经历观察、猜想、实验、证明等数学活动过程。同时提出两个问题,第一:你选用什么三角形, 采用什么方法来验证?第二:经过操作得到什么结论?使学生在操作上有更强的目的性和指向性。学生分小组对大小不一的三角形进行验证,经历量一量、算一算;撕一撕,拼一拼;折一折,量一量等一系列操作活动,从而得出“三角形的内角和是180°”这一结论。整个探究过程学生是自主的、积极的。学生通过操作,思考,反馈等过程真正经历了有效的探究活动。
对于这堂课的困惑,我觉得在有效教学当中,应该如何更好地处理“预设”与“生成”之间的关系,如何巧妙地抓住课堂中的生成,适时调整教学环节。教学设计在准备阶段,我已预设了相关的教学环节。但真正在课堂实施时,可能会出现一些不可预知的因素。如在这节课上的练习环节中,有这样一道题目:已知直角三角形的一个角是40度,求第三个角的度数。在全班交流的时候,有一个学生很快就说出90度-40度=50度。其实在预设教案时,这种方法是最后才提到的,此时我就没有能好好去把握这个有价值的生成资源,把学生聚焦在如何利用简算来解决问题。我完全可以让这些学生说说自己的思考过程,这样做既让学生在解题方法上得到扩充,同时又符合学生的认知规律。要把握在课堂上出现的一些“生成”的资源,如何加以好好的利用。
不足之处:
1.验证猜想环节中,学生的方法虽然各有不同,但方法较单一,语言表达能力欠佳,思维比较定势,不敢大胆尝试不同的方法去验证自己的猜想。
2.评价语言和方法都太单一,激励性评价没有层次。发言的学生面比较窄。
3.教师语言不简练,老重复,总怕学生听不清楚,听不明白,语言罗嗦是我一直以来的大毛病,以后要克制自己学生会说的自己不代替,尽量不重复。
4.因为学生在以前的学习活动中,对剪拼和拼折的方法接触的太少,考虑到课堂教学时间的关系,所以教师引得太多,给学生的自主发现机会太少。
《三角形的内角和》教学反思5
本节课的重点是引导学生探究三角形的内角和, 同时还要使学生学会用三角形的内角和是180°来解决有关计算问题。
课程开始前,我让学生计算三角尺的3个内角的和,很自然地引出了“其它三角形的内角和是否也是180°吗? ”的猜想。当时有同学说不是,又有同学说是的。我告诉学生:任何一项科学研究或发明创造都要经历从猜想到验证的'过程。那么这个猜想可以用什么方法来证明呢?大部分同学首先想到先任意画一个三角形,再用量角器量一量的方法,我让学生去画去量了,结果有些学生量出的内角和的度数要高于180°或低于180°,我让学生讨论一下有哪些因素会影响到研究结果的准确性。过后,我引导学生:180度是什么角?我们能否把三个内角转化一下呢?经过这么一提示学生想到把三个角剪下来拼成一个平角,还有学生想到折的方法。学生在操作过程中受到了启发,最后学生得出:任意三角形的内角和都是180°。学生在动手操作中享受到了学习数学的乐趣。后面通过一系列的练习活动,学生进一步明确三角形的内角和与三角形的大小无关,并体会到求直角三角形的一个锐角可以直接用90°减另一个锐角的度数来计算,培养了学生思维的灵活性,对三角形的内角和也有了更清晰的认识了。
第二次课我从学生常用的一副三角板出发,让学生说说每个角的度数,以及三个内角的度数和,有学生说出三角形的内角和是180度,我就接着问:为什么三角形的内角和是180度?是不是所有的三角形的内角和都是180度呢?学生无语。接下来,我就让学生将课前准备好的三角形拿出来进行研究,可以增强学生的主体意识与参与意识。当学生通过折一折、拼一拼、撕一撕、画一画之后找到自己的验证方法时,他们体验了成功,也学会了学习。在这节课中我们共同找到了几种验证三角形内角和是180°方法。学生们拿着他们手中的三角形,讲述自己的验证方法,虽然有的方法很不成熟,但也可以看出这个过程中,渗透了他们发现的乐趣。在此过程中,我关注的重点除了学生最后论证的结果,更重要的是关注了学生思维的过程。
《三角形的内角和》教学反思6
今天学习的是《三角形内角和定理》第二课时,上节课有活动,下课晚了8分钟,学生小组分任务时,组长领任务,个别组长去厕所,组员忙着来领任务,热情很高,紧接着忙着抄题,有些学生忙着问问题,场面很是喜人。
上课用了十多分钟的时间对学、群学,各小组成员在本组展示中很积极,有的组长和成员追着我问问题,积极性很高,张思敏、吴桐桐语言通畅,声音响亮,进步很大,尤其是吴俊杰展示的调理清晰,效果很好,成为一亮点。
本节课的知识点,是“几何证明”的重要组成部分,这节课所涉及的内容对于证明题的学习显得十分重要。其原因在于如何添加辅助线、进行几何证明的首次学习,学生对此普遍感到困难;本课从“数”与“形”两个角度对辅助线的作法进行了分析与探索。 学生以动手实践、自主探究、合作交流的学习方式进行。我承担了学生自主性、探究性、合作性学习活动的设计者和组织者。在教学过程中,我给学生设置了富有挑战性的`问题情境,让学生分组合作、自主地去探究和发现方法,本节课我的主导作用的发挥是比较好的,主要体现在让学生的主体得到充分的展示。巧妙地化解了难点。
本节课的知识点,学生讲解定理的推论,应用,证明,掌握的较好,学生的积极性之高,出乎我的意料,徐淑瑶、崔秋月出现了一题多解,并且方法简单,得到了大家的好评,另外,参与度较高,但语言、站位等有待提高。
今天这节课,学生准备的虽然不是很充分,但效果不错,学生说这节课过得真快,心理很高兴。
我想,教师要想使学生感受到学习的快乐,就必须让学生体验到靠自己力量获得的成功,体会到探究与发现带来的乐趣。给学生一个展示个性、享受成功的机会。创设民主和谐的氛围,有助于减轻学生的心理负担,使学生的个性见解自由表达,独特做法是引导学生主动展示。例如:证明方法的多样性,反映学生思维的多样性,学生个性的多样性;放手让学生自己思考、展示、小结,体现学生的个性发展。
本节课我多次深入到有学习困难的学习小组,参与探究,引导他们发现,解决遇到的问题。因为每个学生都有按自己的选择参与学习的权利。都受个体已有认知水平和经验的限制,学生的学习很可能“遭遇”障碍,这常常会引发学生的失败感,降低学生学习的自信心,所以老师要适时鼓励,使学生享受到成功的喜悦。享受到一次成功,就会激励学生以更大的努力去追求更大的成功。
《三角形的内角和》教学反思7
三角形的内角和一课,知识与技能目标并不难,但我认为本节课更重要的,是通过自主探究与合作交流,使学生经历知识的形成过程,领悟转化思想在解决问题中的应用,以及在探索过程中,培养学生实事求是、敢于质疑的科学态度,同时,在不同方法的交流中,开拓思维、提升能力。基于以上里面,本节课,我也准备引导学生采用自主探究、动手实践、猜想验证、合作交流的学习方法,并在教学过程中谈话激疑,引导探究;组织讨论,适时启发帮助。使教法和学法和谐统一在“以学生的发展为本”这一教育目标之中。
由于是借班上课,学生对于三角形了解的内容还不够多,所以我才用了直接导入的形式来进入新课,让学生自己探讨什么是三角形的内角,三角形有几个内角,三角形的内角和又是多少呢?来揭示内角和内角和的概念,学生明确了内角与内角和的概念,然后让学生大胆的猜测,三角形的内角和是多少,有的同学猜测是100度、90度、200度,但猜测不等于结论,在这里我追问大家猜测的依据是什么?同学们并没有说出来,于是我引导大家怎样才能知道他们的内角和是多少呢,同学们想到了测量每个内角是多少,然后再求和。我又追问:怎样才能知道每个内角是多少呢?于是同学们想到了量一量,这时让同学们动手进行测量记录数据,但由于学生动手操作前教师没有对操作步骤进行要求,导致同学们在测量时分不清测量的是哪一个角,我及时引导大家把每个内角都标上序号,在进行测量,分别把他们测量的数据填写的报告单当中,因为这样导致了同学们测量的速度较慢,最终由于时间关系钝角三角形的内角和学生操作完成,在展示成果时没有进行展示,同学们只得到了钝锐角、直角三角形的内角和是接近180度的。如果我能再给学生一点点时间,学生就可以完成了,以后教学中还是应该多多放手,给学生留有先足的动手空间和时间。
我认为数学课不仅是解决数学问题,更重要的是思维方式的点拔,使数学思想的种子播种在学生的头脑中。由于在量一量、算一算的环节中,学生初验证了三角形的内角和接近180度的,于是引导学生由180度想到平角,让学生探讨交流:怎样才能把一个三角形的三个内角转化平角。撕拼这一环节过程主要向学生展示渗透转化的数学思想的教学目标。四年级学生在以往的数学学习过程中都积累了不少转化的体验,但在这种体验基本上处于无意识状态,只有合理呈现学习素材,才能使学生对转换策略形成清晰的认识。操作之初,一部分学生没有明确操作目的,把三个不同的三角形的角拼在了一起,我在巡视的'过程中发现了这一现象后,让学生再次谈操作要求,明确操作目标,之后引导学生如何把三个角从三角形分离出来,从而部分学生想到了撕拼法,一部分学生想到了折拼法,于是我请撕拼法的你同学上台展示后,再让用折拼法的同学展示他们的方法,并给予肯定和评价,至此教学目标基本完成,学生明确知道了:三角形的内角和为180度。为了让学生更深刻的理解这一结论,我设计了一变二,和二变一的图形展示,使学生明确了所有三角形的内角和都是180度,与形状大小无关,如果时间充裕的话我想让学生探一下,增加和减少的度数源于哪里。
数学规律的形成与深化,不仅靠感知,还要辅以灵活、有趣、有层次的课堂训练,已达到练习的有效性。对此,我设计了有层次的练习,但由于时间只有了30分钟,这一部分没有来得急提供给学生,可以说是这节课的遗憾之一。
总之,本节课力图学生通过自主探究、合作交流,让学生充分经历知识的形成过程,让学生学会数学、会学数学、爱学数学。在教学过程中,随时会生成一些新的教育资源,课堂的生成大于课前的预设,如何有效的利用生成、有效的进行评价,是我该思考的问题,也是我今后课堂的努力方向。
《三角形的内角和》教学反思8
我所讲的课题是“三角形内角和定理的证明”。我认为本节的重点是通过证明三角形的内角定理让学生感悟出辅助线的做法。
我的导入市让学生感受一些动手操作实验中误差,从而进一步认识到证明的必要性,引出本节所要研究的课题“三角形的内角和定理”,这个定理我们在初一的时候就已经学会运用了,但是这个定理到底如何证明呢?这时,本节的目标就已经明确下来了——三角形内角和定了的证明。证明的过程中,我通过课前准备好的三角形道具,让我的学生通过撕撕拼拼的方法,把三角形的三个内角拼成我们所熟悉的平角或者是同旁内角的关系,那么这个定理的证明过程就完全展示出来了,然后师生共同把我们自己的做法转化成准确的数学语言加以证明,在证明的过程之中,辅助线就自然而然的运用到其中。这时,本节的重点和难点也就自然而然地被突破,要让学生感觉辅助线不是由老师强加告之而明白证明的方法,而是由学生自己在拼图的过程中亲身感悟出来的知识。
课后我认为本节中的成功之处有以下几点
1、引入简单精炼,给了全体学生的自信心,能使所以学生的注意力迅速地集中到课堂上来;
2、利用拼图的方法来找到“三角形内角和定理”的证明方法的过程中,学生充分地配合,学生的思维得到了最大限度的发挥,而且采用此种方法来引出辅助线在几何中应用,巧妙地分散了本节的重点和难点,事实也证明学生的接受程度很好;
3、教师在多媒体上展示每个三角形都是用三种不同颜色的彩纸拼成的,学生在学习的过程中看起来会更加的清晰、醒目;
4、在本节“三角形内角和定理”的应用阶段,我设置了“你来讲”题目,而且此类题目的要求是哪位同学想尝试一下,等学生站起来准备好之后,教师再把题目投影出来,不仅要锻炼学生的思维速度,而且也间接地培养了学生的'临考能力,同时得到结果后要为同学们讲解本题的解法。我个人认为,给同学们讲题目的过程中收获是更多的。
5、在本节课的整个流程中,师生之间的配合非常地默契,教师能够关注每一个学生,学生的思维也在短短的45分钟内得到了充分地发散和发挥,通堂的气氛活跃、轻松。
课后我认为本节课中的不足之处:
1、在学生拼图寻求“三角形内角和定理”证明之前的铺垫,有些过快,导致个别学生不太明白这些铺垫对于利用拼图来证明定理时有什么用途;
2、不完全相信学生的能力,比如在学生讨论拼图方法后,让学生到黑板上来展示作品的时候,我似乎不敢距离学生太远,恐怕中间会出现什么差错。而实践证明学生完全是通过自己来完成作品的展示的;
3、还是没有改掉急躁的毛病,一些问题还是急于说出答案,没有给学生们足够的思考时间,这是其一。其二,教师讲得过多,没有给学生充足的自主权,没有把课堂还给学生。针对自己的优点和缺点,在以后的教学工作中要注意积累和进步。
《三角形的内角和》教学反思9
备学提纲:
1、你能用哪些方法验证“三角形的内角和是180°”这一猜想?至少想出两种。写出具体的操作过程。
2、阅读课本P28-29,记下收获和问题。
3、准备三个锐角三角形,三个直角三角形,三个钝角三角形和一张正方形纸。
批阅了孩子们的预习作业,亮点是孩子开始会提问题了,如:
1、什么是内角?
2、两个三角尺拼成一个三角形,这个三角形的内角和是多少?是360°吗
3、两个三角形拼成一个大三角形,画出来的时候中间有1竖,1竖两边的直角为什么不算呢?
4、所有的三角形的内角和都是180°吗?
5、用正方形纸折几次,才有8个三角形呢?
6、既然有内角那有没有外角呢?如果有外角,那外角的度数是和内角的一样吗?
存在的问题:
1、孩子们想到的验证内角和的方法局限在:用计算直角三角形的各个角的度数的和;画一个三角形,量出每个角的度数再计算。只有一人(季##提到用折的方法来验证,看来,孩子们还是不会读数学课本,没有看懂课本上图示的折的过程,要加强阅读课本的指导,这是以前忽视阅读文本带来的不良结果,直接影响了孩子们的自学能力。
2、我设计的预习题,没能从学生的实际出发,我觉得孩子们已经知道了三角形的内角和是180°,就没有引导他们去理解什么叫内角?这也是孩子们不知如何去验证内角和的一个原因。
今天的课堂,花了一些时间指导孩子如何阅读课本,尤其是阅读课本上的`图,看着课本上的图示来操作,所以教学环节不那么紧凑了,印象最深的是:
孙##和陈##两个有些内向的女孩子,在课堂上能主动站起来说出自己的想法,带着自己的三角形到前面来演示如何用折的方法验证三角形的内角和是180°。刘##今天能主动补充别人的回答。
每一个孩子都充满着无穷的潜力,他们暂时的落后,是因于学习对象没有激起他们的兴趣,是因为缺少一个能挖掘潜力的人!
《三角形的内角和》教学反思10
在教学中我关注到学生的情绪状态,想法设法调动学生的积极性,维持他们学习的兴趣和注意力,环节设计松紧有度。看来,要上好一节课,教育心理学方面的知识是不可缺少的。自己在教学理念上的转变。以前自上课总不放心让学生自主探索,总希望在有限的时间内多灌输一点,提高课堂“效率”。课堂中,我成了“职业灌输器”,学生充当了“专业接收站”,造成了老师累,学生烦的局面。这次我思想开放了,课堂上做到了“三活”——“学生活中的”,“在活动中学”,“灵活地学”,总之“活”贯穿于整个课堂。整节课,学生是在老师的引导下,以小组为单位自主探索、自主总结归纳。比以前的满堂灌强多了。所以说,放心让学生探索,精心引导学生是成功的关键。
在练习的时候,由于形式多样,所以学生的兴趣非常高涨,效果很好。总体来说这节课还有不足之处。学生在折纸验证三角形的内角和后汇报时,我引导小结不够。在练习时基本练习题太少。
1.在学生小组合作学习的时候,老师应该干什么?
我们经常会看到,学生小组合作学习时,老师会边走边不停地提示学生应该干什么、怎么干。其实,这个时候老师的提示对学生而言往往是没有任何价值的,不仅影响学生的思路,还会干扰学生的思维。我想,这个时候教师应该做的是快速浏览每个小组,看看每个小组的问题所在,帮助每个小组排除学习的'障碍。然后找到最需要帮助的小组,介入到这个小组的学习中,了解学生的状态,为后面的交流做好准备。因为在几分钟的交流时间内,老师不可能每个小组都照顾到,但是一定要做到心中有数,帮助每个小组找到解决问题的思路。
2.当学生的认知和原有的经验发生冲突时怎么办?
在新课程理念下,就是让学生去研究和探索,然后获得结论。但是,在实际的课堂情境中往往会有很多情况出现。如果我这样做了,我的教学任务就完不成了;如果我那样做了,就可能会偏离我的教学设计,学生的问题可能会让我不知所措。其实,在课堂中,这是进行探究性教学的最好契机,抓住学生最核心的问题,重组我们的课堂思路,留给学生思考的空间,让学生去探讨问题。我想,课堂教学是为学生的学习和成长服务的,教师要勇于放手,给学生更大的思维空间。
《三角形的内角和》教学反思11
《三角形内角和》是人教版四年级下在学生掌握了三角形的特性和分类之后的一个内容。三角形的内角和为180°是三角形的一个重要性质。它有助于学生理解三角形三个内角之间的关系,也是学生下一步学习三角函数的基础。通过前面的摸底,我发现百分之八十的学生对三角形的内角和是180度是知道的,但都没有仔细研究过。学生有了这样的基础之后,对教师来说,要展开教学还是有困难的。怎么样才能让学生在整堂课中有所收获呢?我把教学目标定位在让学生经过操作、验证等一系列活动,经历猜测、验证的过程,从而习得知识,并得以巩固。我是这样安排的:
一、认识内角
通过回忆旧知,引出钝角三角形,让学生指钝角,接着说另外二个角为锐角,
教师接着引出这三个角叫做这个钝角三角形的三个内角,并画上相应的角的符号。师接着呈现直角三角形和锐角三角形,让学生找内角,让内角这一概念得到巩固。应该说在这个过程中,内角这个概念是落实得比较到位的,学生也能很快领悟到每个三角形的三个内角分别是什么。
二、认识并猜测内角和
通过前一阶段的说课,教研员指出在学习三角形的内角和是180度这一内容
时,我们首先要告诉学生,或者是形成一个共识,那就是三角形的内角和都是一样的,也就是是一个固定的数,有了这样的前提之后才能让学生进行猜测并验证。所以在设计的时候,我把这二个活动结合在一起进行了。通过让学生观察,猜测哪个三角形的三个内角和相加的和最大?通过这一问题,既引出了内角和,也抛出了猜测。在这个问题抛出之后,通过和吴校长讨论,我们做了各种各样的预设。在课上,问题一抛下去,学生都说是一样的,是180度。面对这样的起点,我就接着问学生一个问题,你是怎么知道的?第一位学生回答得支支吾吾,也不知道该怎么说,就坐下了。第二位学生说:因为三角板上有过的,相加的和是180度。这个回答也是在我预设之内的,学生对三角形的内角和接触最多的就是从三角板上获得的,所以当学生有了这样的回答之后。我就说,同学们,看一看我们的三角板,你发现它们都是……(直角三角形)那钝角三角形和锐角三角形呢?你们仔细研究过吗?今天我们就来研究一下这个问题。通过这一环节,直接把话题引到了今天学习的内容上来了。
三、动手测量,验证猜测
在这个过程中,我分了二个层次,第一:学生量教师给的三种类型的三角形。
第二:生任意画一个三角形进行验证。让学生经历从特殊到普遍的过程。这是动手操作的过程。因为前面没有试教过,所以在这里花的时间比较多,我自己觉得课上得有点拖,也有点沉闷。但在这一过程中,我也发现了很多的问题。很多学生是运用180度这个结论来量的。比如说他先量了二个角,最后一个角就不量了,直接用180度减去前面二个角,就是第三个角。我想如果这样的`话就失去了测量的意义了。在交流的过程中,很多同学都说他们测量的结果是180度,导致另外一些不是180度的学生不敢表达自己的意见。我想面对这样的问题,如果我在交流反馈的时候,再多加一个环节,问你量出来的三个角分别是几度,内角和是几度,这样是不是会减少一些这样的问题。
四、通过剪剪拼拼,再次验证
这一环节,我选择了直接告诉学生,剪下三个角来拼一拼,看看有什么发现。
通过了解,其实有一些学生是知道的。(在听课的过程中,旁边的四年级老师告诉我,他们以前组织过这样的活动,让学生剪角、拼角,所以一些学生有这样的基础)因为事先没有了解,所以我低估了学生的能力。如果我选用抛问题的方法,可能会出现一些亮点。当然这也只是一小部分学生而已,其实在实际的操作过程中,在我电脑演示了剪与拼的过程之后,再让学生自己任意剪一剪、拼一拼的时候,还是有很多学生是不会拼的,不知道三个角该怎样放。我想在这个过程中,我在电脑演示的时候,如果再多加引导一下的话,可能在操作的过程中,更多的学生能够参与进来。
整堂课下来,我自己觉得上得很沉闷,由于操作活动比较多,学生的注意力也不是非常集中,当然这和我自己有很大的关系,因为没试教,心里紧张,也因为自己没有经验,课堂气氛没能调节得很好。幸亏有幸听了另外二位老师的课,感觉受益匪浅。特别是徐老师的设计,给了我很大的启示。在自己的课中,我就觉得虽然验证的过程很严密,从特殊到普遍这样一个过程,但是留给学生思考的空间特别少,学生只是进行一些操作。而徐老师通过对直角三角形的验证,继而请学生选择自己喜欢的方法对钝角三角形和直角三角形进行验证,我认为这样设计比我这样设计要好,学生的学习主动性也一下子体现了出来。在验证的过程中,也是方法的运用。总而言之,在上课的过程中,给了我一次学习的过程,在教案设计时,该怎么样把每一个环节落实到位,怎么样说好每一句话,预设好每一个环节。在听课的过程中,让我有了茅塞顿开的感觉,当然这些离不开执教者对教材的深入理解,所有这些,都让我这个新教师感动……
《三角形的内角和》教学反思12
1、教师的教学方式要适应学生的学习。新课程明确倡导动手实践、自主探究、合作交流的学习方式。这就要求教师的角色,应当从过去知识的传授者转变为学生自主性、探究性、合作性学习活动的设计者和组织者。在教学过程中,我给学生设置了一个开放的、面向实际的、富有挑战性的问题情境,让学生独立、自主地去探究验证其他学生已发现的知识,通过实验、操作、表达、交流等活动,经历探究过程,获得知识与能力,掌握解决问题的方法,获得情感体验。我想:只要我们坚持“为学习而设计”、“为学生的发展而教”,那么我们的课堂将会更加生机勃勃、充满智慧的欢乐和创造的快意。
2、让每位学生都有所发展。这节课我进行了8次课堂巡视,其中4次参与学生的讨论、交流,两次分别对三名学困生进行重点辅导,巡视时关注面较广,目的性明确。但在“个别学生课堂行为表现”的重点观察中,一位学困生在前半节课中共举了两次手,未被我关注,之后再没举过一次手。课后这位学生找到我问我原因。我与他进行了个别谈话,问他为什么后半节课没再举手,回答是:“反正也不会提问到我。”学生的.态度似乎有些不以为然,其实蕴含着不满。说明我们教师在课堂中不应忽略个体差异、害怕问题暴露,相反应充分重视、关爱学困生,让每位学生都有所发展。
3、对数学学习的评价要做到既关注学生学习的结果,更要重视他们学习的过程;要关注学生数学学习的水平,更要关注他们在数学活动中所表现出来的情感与态度,帮助学生认识自我,建立信心。对学生的精彩回答应予以热情的肯定,促使学生的思维更加活跃。
4、加强对学生的思维和方法的指导。创造一个好的数学问题情境,提供孩子们理解数学的模型和材料是教学设计活动中的第一步,但是要让学生看到其中所蕴涵的数学观念,作为教师不能让这些数学活动只停留在表面。
《三角形的内角和》教学反思13
本节课我通过生动活泼的多媒体课件和学生们一起探讨三角形的内角和是180°这一规律并运用这一规律解决实际问题。课件中不仅有动画而且插入音频,激发学生的学习兴趣,开阔学生的眼界,调动他们学习的激情。
首先课件演示三种不同的三角形在争吵,(学生录音,把每个三角形说的话录下放入课件中)让学生判断他们在争吵什么,引入本节课内容。这样可以使学生的眼睛一亮,耳朵受到刺激,吸引珠学生们的注意力,很巧妙就把学生带到课堂上,激发他们的学习兴趣。
再次让学生观察每把三角尺的内角和内角和,以及用两个一样的三角尺拼成一大三角形,它的内角和内角和是多少,利用身边的学具材料猜想是不是所有的三角形内角和都是180°呢?提出问题,提出质疑,学生带着问题和质疑进行小组合作探究。合作探究时同桌两人一组测量三角形的内角以及计算三角形的内角和,并抽查小组上台把合作探究结果输入电脑表格一便统计和观察。但是由于需要帮助学生输入电脑,不能对每组学生的测量进行指导及询问,很多学生是运用180度这个结论来量的,不过还是有一组学生测量后得出结论是189°,有了误差。下面我就引导学生哪个角是180°,以致学生提出把三角形的三个内角撕下来看看能否拼成一平角,,师生共同撕拼一个任意的三角形,撕拼过程中学生不知如何下手 我对学生进行辅导。但是有时间的.有限,不能让所学生都亲自感受一下这一撕拼的过程。但是课件上我运用动画演示,学生可以亲眼看到这一过程。
课堂练习我是通过一个游戏“挑战不可能”巩固三角形的内角和是180°这一规律,运用课件展示了练习题的多样化,层次化,有易到难,并运用一些可爱的图片吸引学生的注意力。会后有主角“三角形”(音频)出题带到“荣誉殿堂”。游戏是孩子都喜欢,在课堂上设计一些游戏环节可以激起孩子的活力,调动他们高涨的情趣。但是我觉得这节课我设计的这个游戏只激起部分孩子的兴趣,如果把这个游戏设计成小组比赛或者男女比赛,看谁最终进入“荣誉殿堂”更激发学生的激情。
总之,本节课我和学生完成的教学目标,学生也能感受到课件不仅能播放图片,而且可以播放音频、动画。通过这节课我深刻体会到运用多媒体教学的优势,可以开阔学生眼界,刺激学生的各种感官,激发他们的学习兴趣,同时也使教学重点难点可以清晰的展示给学生,可以增大课堂的容量。在今后的教学中,我会是自己不断提升自己的教学水平,多学习和运用信息技术手段改善自己的教学方式,以致提高学生课堂上的学习效率!
《三角形的内角和》教学反思14
三角形的内角和是180°是三角形的一个重要性质。它有助于学生理解三角形的三个内角之间的关系,也是进一步学习的基础。
成功之处:
1.教学中注意了两点:一是让学生理解“内角”“内角和”的含义;二是让学生为了使所得的结论具有普遍性,对锐角三角形、直角三角形、钝角三角形进行操作实验。
2.教学中采用让学生课前剪出锐角三角形、直角三角形、钝角三角形,然后量出每个角的度数,初步感知三角形的内角和的特征。课上让学生汇报三角形的内角和的度数有180°、178°182°等。由于学生在量、画三角形的过程中出现误差,导致出现三角形的内角和是180°左右,在此情形下,让学生通过小组合作交流,在小组内通过动手操作、记录、观察,验证三角形的内角和是否为180°。探索验证三角形内角和的特征。通过学生间的合作交流、智慧碰撞、思维火花闪现,出现了剪一剪、折一折两种验证方法,从而得出三角形的内角和是180°这一三角形重要性质。
3.在解决问题中,明确应用三角形内角和是180°,可以解决在一个三角形中,已知两个角的度数,可以求第三个角的度数。
不足之处:
在对于直角三角形中,可以引导学生采用简便方法求出其中一个角的'度数,对于直角三角形的特点加以分析。
重视对直角三角形、等腰三角形中,求其中一个角度数的方法的对比练习,让学生比较清晰的解决特殊三角形的一个角的度数。
《三角形的内角和》教学反思15
三角形内角和,是在学生认识了三角形的特点和分类的基础上进一步对三角形内角之间的关系的学习和探究。学生已经掌握了三角形的概念、分类,熟悉了钝角、锐角、平角这些角的知识。对于三角形的内角和是多少度,学生是不陌生的,因为学生有以前认识角、三角形分类的基础,学生也有提前预习的习惯,几乎孩子们都能回答出三角形的`内角和是180度,在这个过程中孩子们知道了内角的概念,但是他们却不知道怎样才能得出三角形的内角和是180度。因此本节课我提出的研究的重点是:验证三角形的内角和是180度。
本节课主要是学生在小组中合作探索,可以量一量、剪一剪、折一折。选择一种或者几种方法来验证三角形的内角和是180度,并运用所得的结论解决实际生活中的一些问题!让学生进行实验、动手操作、自主探索,使学生主动积极的参加到数学活动中来!
创设情境,营造研究氛围。怎样提供一个良好的学习平台,使学生有兴趣去研究三角形内角的和呢?为此我以生活中与三角形相关的例子引入课题,之后学生由课题引出疑问 “三角形的内角指的是什么?”“三角形的内角和是多少?”然后让学生根据图形自己解答疑问。然后通过计算三角板上三角形的内角和,引发学生的猜想:其他三角形的内角和也是180°吗?带着这个疑问,让学生小组合作探索,验证。小组合作的时候,学生找到了三种方法,分别是量一量,剪一剪,折一折的方法。通过这三种方法验证了 “三角形的内角和是180°”的结论。然后将利用这一规律解决了刚开始的疑问。然后我给出三角形。再一次明确:不论三角形的大小如何变化,它的内角和是不变的。
在课堂上,我们要学会放手,轻松自己,发展学生。放手让学生自己去思考去做,那怕他想错了做错了,只有这样他们才有机会知道自己错了错在哪儿,给他们更自由更广阔的发展空间,也只有这样才能唤起他们思考的欲望,也只有这样才能扬起他们创造的风帆!
【《三角形的内角和》教学反思】相关文章:
(实用)《三角形的内角和》教学反思15篇06-06
必备三角形内角和教学设计03-16
《三角形的内角和》数学教案04-08
《多边形的内角和》说课稿10-07
教学反思和课后反思09-17
《三角形的特性》教学反思06-13
三角形分类的教学反思08-20
长城和运河教学反思09-14
《松鼠和松果》教学反思07-13
《平移和旋转》教学反思06-26